15104

B. Tech 4th Semester Examination Pulse Shaping and Wave Generation (OS) EC-4005

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question each from sections A, B, C and D. Section - E is compulsory.

SECTION - A

- (a) Show that low-pass circuit with a large time constant acts as an integrator. Draw the response of a low pass circuit with small, medium and large time constants when input is square wave. (10)
 - (b) Draw the high-pass circuit and explain its working. How a High RC circuit is used in linear wave shaping? Find out the lower cut off frequency of high pass circuit.

(10)

- (a) Explain the design procedure of Transistor Switch. For a
 CE transistor circuit with V_{cc} = 15V, R_c = 1.5K ohms,
 calculate the transistor power dissipation at open and
 closed positions. (10)
 - (b) Give the expression for rise time and fall time in terms of transistor parameters and operating currents. What is delay time and storage time of a transistor? What factors does contribute to it? (10)

[P.T.O.]

2 15104

SECTION - B

- (a) How the clipping circuits are used in non-linear wave shaping? Draw a circuit to transmit that part of a sine wave which lies between +4V and +8V and explain its working. (10)
 - (b) The limiter circuit is shown below:

Explain its working and Sketch its output waveform.

(10)

- 4. (a) What are the limitations of practical clamping circuit? What do you mean by biased clamping? A 100V peak square wave with an average value of 0V and a period of 20ms is to be negatively clamped at 25V. Draw the input and output waveforms and necessary circuit diagram. (10)
 - (b) Explain the working of transistor as switch. Explain the various timing parameters associated with transistor switching characteristics. (10)

SECTION - C

5. (a) Draw the circuit diagram and explain a DTL gate. Why totem pole is used in DTL? (10)

3 15104

- (b) What are registers? Explain circuit of dynamic registers. (10)
- (a) Why NAND and NOR are known as universal gates.
 Prove that positive logic NOR is equivalent to negative logic NAND gate.
 (10)
 - (b) Describe the characteristics of logic families. Compare logic gates. (10)

SECTION - D

- (a) Derive an expression for the frequency of oscillations of an astable multivibrator. Show that an astable multivibrator can be used as a voltage to frequency converter. (10)
 - (b) Draw and explain the base and collector waveforms of a monostable multivibrator. Derive the expression for the gate width of a monostable multivibrator. (10)
- 8. (a) Explain the working of bidirectional diode gate. (10)
 - (b) Why are sampling gates called Selection circuits?

 Compare the unidirectional and bi directional sampling gates (10)

SECTION - E

- 9. (i) What is sampling gate? Explain how it differs from Logic gates?
 - (ii) How low pass RC circuit act as integrator?
 - (iii) Define a diode forward recovery time and reverse recovery time.
 - (iv) Describe De-Morgen theorem.

[P.T.O.]

- 4 15104
- (v) What do you understand by dynamic analysis of switches?
- (vi) What are the different schemes for temperature compensation of clipper?
- (vii) Explain the effect of temperature on transistor parameters.
- (viii) Why are RC circuits commonly used compared to RL circuits?
- (ix) What is positive clamping?
- (x) Draw a circuit to transmit that part of a sine wave which is below-5V. (2×10=20)